

Mitochondrial Respiratory Chain Complex IV Activity Assay Kit

(Cytochrome C Oxidase Activity)

Note: It is necessary to predict 2-3 large difference samples before the formal determination.

Operation Equipment: Spectrophotometer

Cat No: BC0940 **Size:**50T/48S

Product Composition: Before use, please carefully check whether the volume of the reagent is consistent with the volume in the bottle. If you have any questions, please contact Solarbio staff in time.

Reagent name	Size	Preservation Condition
Extract solution	Liquid 80 mL×1	2-8°C
Reagent I	Liquid 30 mL×2	2-8°C
Reagent II	Powder×2	-20°C
Reagent III	Powder×2	2-8°C

Solution Preparation:

1. Working solution: Before use, transfer a bottle of Reagent II and a bottle of Reagent III to a bottle of reagent I for mixing and dissolution. It can be stored at -20°C for two weeks after dispensing to avoid repeated freezing and thawing.

Product Description:

Mitochondrial Respiratory Chain Complex IV also knows as cytochrome c oxidase, is a common component of the main and branch of mitochondrial respiratory electron transport chain, and finally transfer electrons to oxygen to generate water.

Reduced cytochrome C has characteristic absorption peak at 550 nm, mitochondrial complex IV catalyzes the formation of oxidized cytochrome C from reduced cytochrome C. The enzyme activity of Complex IV can be calculated by detecting the decrease rate of reduced cytochrome C at 550 nm.

Reagents and Equipment Required but Not Provided:

Spectrophotometer, water bath/constant temperature incubator, desk centrifuge, adjustable pipette, 1 mL glass cuvette, mortar/homogenizer/cell ultrasonic crusher, ice and distilled water.

Procedure:

I. Complex extraction:

- 1) Collecting 0.1 g of tissue or 5 million cells, add 1 mL of Extract solution, grinding on ice with mortar/homogenizer. Centrifuge at 600 ×g for 10 minutes at 4°C.
- 2) Take the supernatant to another tube and centrifuge at $11000 \times g$ for 15 minutes at 4°C.

- 3) The supernatant can use to detect Complex IV that leaking from mitochondria, which shows the effect of mitochondrial extraction.
- 4) Add $400 \mu L$ of Extract solution to the sediment, splitting with ultrasonic (power 200W, work time 5s, interval 10s, repeat 15 times), used to detect the enzyme activity of Complex IV and protein content.

II. Determination procedure:

- 1) Preheat spectrophotometer for 30 minutes, adjust wavelength to 550 nm, set zero with distilled water.
- 2) Preheat working solution at 37°C (mammal cell) or 25°C (other species) for 15 minutes.
- 3) Add the following reagents in 1 mL glass cuvette:

Reagent(µL)	Test tube (T)	Blank tube (B)
Sample	50	-Q 11111
Distilled water	Lariones -	50
Working solution	1000	1000

Mix thoroughly and timing, detect the absorbance of initial and final reaction at 550 nm, record as A1(10s) and A2(1min10s) respectively. Δ A(T)=A1(T)-A2(T), Δ A(B)=A1(B)-A2(B). Δ A= Δ A(T)- Δ A(B). Blank tube needs to test once or twice.

III. Calculation:

Unit definition: One unit of enzyme activity is defined as the amount of enzyme catalyzes the degradation of 1nmol of reduced cytochrome C per minute every milligram tissue protein.

Complex IV Activity (U/mg prot)= $[\Delta A \times Vrv \div (\epsilon \times d) \times 10^9] \div (Vs \times Cpr) \div T = 1099 \times \Delta A \div Cpr$

ε: Cytochrome C molar extinction coefficient, 1.91×10⁴ L/mol/cm;

d: Light path of cuvette, 1 cm;

Vrv: Total reaction volume, 1.05×10⁻³ L;

Vs: Sample volume, 0.05 mL;

Cpr: Sample protein concentration, mg/mL;

T: Reaction time (min), 1 minute;

10⁹: Unit conversion factor, 1 mol=10⁹ nmol.

Note:

- 1. Take two or three different samples for prediction before test. Dilute supernatant with distilled water if A1>1 or Δ A>0.4, multiply dilute times in the formular. Increase the sample volume if Δ A is low.
- 2. Since the extract contains a relatively high concentration of protein, it is necessary to subtract the protein content of the extract itself when determining the protein concentration of the sample.
- 3. The reagent in this kit is enough to complete 50 tube reaction.
- 4. Attachment: calculation formula of sample weight: (the number of test samples is 50T/24S)

BC0940 (50T) -- Page 2 / 4

A. Supernatant:

Unit definition: One unit of enzyme activity is defined as the amount of enzyme catalyzes the degradation of 1nmol of reduced cytochrome C per minute every gram of tissue.

Complex IV Activity(U/g)= $[\Delta A1 \times Vrv \div (\epsilon \times d) \times 10^9] \div (W \div Ve \times Vs) \div T = 1099 \times \Delta A1 \div W$

 Δ A1: Supernatant absorbance;

Vrv: Total reaction volume, 1.05×10⁻³ L;

ε: Cytochrome C molar extinction coefficient, 1.91×10⁴ L/mol/cm;

d: Light path of cuvette, 1 cm;

Ve: Extract solution volume, 1 mL;

Vs: Sample volume (mL), 0.05 mL;

T: Reaction time (min), 1 minute;

W: Sample weight, g;

109: Unit conversion factor, 1 mol=109 nmol.

B. Sediment:

Unit definition: One unit of enzyme activity is defined as the amount of enzyme catalyzes the degradation of 1nmol of reduced cytochrome C per minute every gram of tissue.

Complex IV Activity(U/g)= $[\Delta A2 \times Vrv \div (\epsilon \times d) \times 10^9] \div (W \div Ve \times Vs) \div T = 440 \times \Delta A2 \div W$

 Δ A2: Sediment absorbance;

Vrv: Total reaction volume, 1.05×10⁻³ L;

ε: Cytochrome C molar extinction coefficient, 1.91×10⁴ L/mol/cm;

d: Light path of cuvette, 1 cm;

Ve: Sediment resuspended volume, 0.4 mL;

Vs: Sample volume (mL), 0.05 mL;

T: Reaction time (min), 1 minute;

W: Sample weight, g;

109: Unit conversion factor, 1 mol=109 nmol.

C. Total activity is the sum of Complex IV activity in supernatant and sediment.

Complex IV Activity(U/g)= $1099 \times \Delta A1 \div W + 440 \times \Delta A2 \div W$.

Experimental example:

1. 0.1g of rabbit liver is taken for sample processing, and the operation is performed according to the determination steps. Using 1 mL glass cuvette, supernatant: $\Delta A2 = A1_B - A2_B = 0.79 - 0.781 = 0.009$, $\Delta A1 = A1_T - A2_T = 0.822 - 0.792 = 0.03$, ΔA supernatant = $\Delta A1 - \Delta A2 = 0.03 - 0.009 = 0.021$, precipitation: $\Delta A1 = A1T - A2T = 0.992 - 0.792 = 0.2$, ΔA precipitation = $\Delta A1 - \Delta A2 = \Delta A1 - \Delta A2 = 0.2 - 0.009 = 0.191$.

The activity of complex IV in supernatant (U/g mass) = $1099 \times 0.021 \div 0.1 = 230.79$ U/g mass BC0940 (50T) -- Page 3 / 4

The activity of complex IV in the precipitation (U/g mass) = $440\times0.191\div0.1$ =840.4 U/g mass The total activity of complex IV (U/g mass) = $1099\times0.021\div0.1+440\times0.191\div0.1=1071.19$ U/g mass.

Recent Product Citations:

- [1] Qiuli OuYang, Nengguo Tao, Miaoling Zhang. A Damaged Oxidative Phosphorylation Mechanism Is Involved in the Antifungal Activity of Citral against Penicillium digitatum. Frontier in Immunology. February 2018; (IF4.259)
- [2] Huazhang Zhu, Weizhen Zhang, Yingying Zhao, et al. GSK3β-mediated tau hyperphosphorylation triggers diabetic retinal neurodegeneration by disrupting synaptic and mitochondrial functions. Molecular Neurodegeneration. November 2018;(IF8.274)
- [3] Wang M, Zhang Y, Xu M, et al. Roles of TRPA1 and TRPV1 in cigarette smoke-induced airway epithelial cell injury model[J]. Free Radical Biology and Medicine, 2019, 134: 229-238.
- [4] Bao Z, Xu X, Chao H, et al. ERK/Nrf2/HO-1 pathway-mediated mitophagy alleviates traumatic brain injury-induced intestinal mucosa damage and epithelial barrier dysfunction[J]. 2017.
- [5] Li N, Qin S, Xie L, et al. Elevated Serum Potassium Concentration Alleviates Cerebral Ischemia-Reperfusion Injury via Mitochondrial Preservation[J]. Cellular Physiology and Biochemistry, 2018, 48(4): 1664-1674.

References:

[1] Willis J H, Capaldi R A, Huigsloot M, et al. Isolated deficiencies of OXPHOS complexes I and IV are identified accurately and quickly by simple enzyme activity immunocapture assays[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2009, 1787(5): 533-538.

Related Products:

BC0510/BC0515	Electron Transport Chain Complex I Activity Assay Kit
BC3230/BC3235	Electron transport chain Complex II Activity Assay Kit
BC3240/BC3245	Electron transport chain Complex III Activity Assay Kit
BC1440/BC1445	Electron transport chain Complex V Activity Assay Kit