Cellulase (CL) Activity Assay Kit

Note: Take two or three different samples for prediction before test.

Operation Equipment: Spectrophotometer

Catalog Number: BC2540 Size:50T/24S

Components:

Extract reagent: 30mL×1, storage at 2-8°C.

Reagent I: 4mL×1, storage at 2-8°C.

Reagent II: 10mL×1, storage at 2-8°C.

Reagent III: 13mL×1, storage at 2-8°C.

Standard: powder $\times 1$, storage at 2-8°C. Containing 10 mg of anhydrous glucose (loss on drying < 0.2%). Add 1 mL of distilled water to dissolve it for standby before use. It can be stored for two week at 4°C, or it can be stored for a longer time with saturated benzoic acid solution.

Product Description:

Cellulase (EC 3.2.1.4) exists in bacteria, fungi and animals, which can catalyze cellulose degradation. It is a type of enzyme preparation that can be widely used in the fields of medicine, food, cotton spinning, environmental protection and renewable resource utilization.

The 3.5-dinitrosalicylic acid method is used to determine the reducing sugar content of cellulose catalyzed by CL.

Reagents and Equipment Required but Not Provided:

Spectrophotometer, water bath, adjustable transferpettor, mortar/homogenizer, centrifuge, 1mL glass cuvette, ice and distilled water.

Sample preparation:

- Bacteria or cells: Collect the bacteria or cells into a centrifuge tube, discard the supernatant after centrifugation; add 1 mL of Extract reagent for every 5 million bacteria or cells, and break the bacteria or cells with an ultrasonic ice bath (power 200w, ultrasonic 3 seconds, interval 10 seconds, repeat 30 times); Centrifugate at 8000g and 4 °C for 10min, take the supernatant and place on ice for testing.
- 2. Plant and animal tissues: Weigh about 0.1 g of sample, add 1 mL of Extract reagent and fully grind. Centrifugate at 8000g and 4°C for 10 min, the supernatants as samples to be tested.

Procedure:

- 1. Preheat spectrophotometer for 30min, adjust the wavelength to 540 nm and set the counter to zero with distilled water.
- 2. Prepared standard: The standard was diluted with distilled water to 1, 0.8, 0.6, 0.4, 0.2, 0.1, 0 mg/mL..
- 3. Add reagent to a 1.5 mL EP tube:

BC2540 - Page 1 / 3

Reagent name (µL)	Control tube (Ac)	Test tube (At)	Standard tube (As)
Reagent I	50	50	
Reagent II	200	200	- 18 Profes
Distilled water	50	50	S-OFF SU
Sample		50	- (L) -
Boiled sample	50		-
Mix well, and react accurat	ely in water bath at 40°C	c for 30min. after takin	ng out, put it in boiling
water and boil for 15min imp	mediately to get the sacch	arification solution.	
Saccharification solution	50	50	-
Standard solution	-	(E) [*] -	50
Reagent III	150	150	150
Mix we	ell, boil for 15min in a bo	iling water bath and co	ol.
Distilled water	1050	1050	1050

Mix well, set the counter to zero with distilled water, and measure the absorbance at 540 nm, and calculate $\Delta A = At-Ac$. $\Delta As = As-A(0 \text{ mg/mL})$. Standard curves only need to be done 1-2 times.

Calculation:

1. Standard curve

A standard curve was created from the absorbance $(x, \Delta As)$ and concentration (y, mg/mL) of the standard tube, and $\Delta At (x, \Delta At)$ was brought into the standard curve to calculate the amount of product y (mg/mL) generated by the sample.

2. Calculation

(1)Protein concentration:

Unit definition: One unit of enzyme activity is defined as the amount of enzyme that catalyzes the production of 1µg glucose per minute in the reaction system every milligram tissue protein

 $CL (U/mg prot) = 1000 \times y \times Vrv \div (Vs \times Cpr) \Rightarrow T = 233y \Rightarrow Cpr$

(2)Sample weight:

Unit definition: One unit of enzyme activity is defined as that one gram tissue catalyzes the production of 1µg glucose per min in the reaction system.

 $CL(U/g) = 1000 \times y \times Vrv \div (Vs \times W \div Ve) \Rightarrow T = 233y \div W$

(3)Cells or bacteria:

Unit definition: One unit of enzyme activity is defined as that 10^4 cells or bacteria catalyzes the production of 1µg glucose in the reaction system per min.

CL (U/10⁴ cell) = $1000 \times y \times Vrv \div (500 \times Vs \div Ve) \div T=0.467 \times y$

1000: $1 mg/mL = 1000 \mu g/mL$

Vrv: Total volume of reaction system, 0.35mL.

Vs: sample volume added, 0.05mL;

Ve: volume used in the extraction solution, 1mL;

BC2540 - Page 2 / 3

https://www.solarbio.net

For research use only. Do not use for clinical, diagnostic, food, cosmetic testing and other purposes.

Cpr: sample protein concentration, mg/mL;

W: Fresh weight of sample, g;

T: React time, 30min.

500: the number of cells or bacteria, 5 million

Recent Product Citations:

Guo Q, Du G, Qi H, et al. A nematicidal tannin from Punica granatum L. rind and its physiological effect on pine wood nematode (Bursaphelenchus xylophilus)[J]. Pesticide biochemistry and physiology, 2017, 135: 64-68.

References:

Faria M L, Kolling D, Camassola M, et al. Comparison of Pennicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates[J]. Biores. Technol, 2008, 99: 1417-1424.

Related Products:

BC0340/BC0345	Glucogen Content Assay Kit
BC2450/BC2455	Plant Tissue Fructose Content Assay Kit
BC2510/BC2515	Trehalase Activity Assay Kit

BC2540 - Page 3 / 3

For research use only. Do not use for clinical, diagnostic, food, cosmetic testing and other purposes.